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In spite of its practical relevance, little is known about the turbulence characteristics
in sharp open-channel bends, which may largely be attributed to a lack of accurate
experimental data. This paper reports an experimental investigation of the turbulence
structure in one cross-section of an open-channel bend. The flow pattern in this
section is characterized by a bicellular pattern of cross-stream circulation (secondary
flow) and, in the outer part, a strongly reduced turbulence activity as compared
with straight uniform shear flow. The turbulence structure differs fundamentally from
that in straight uniform shear flow. The velocity fluctuations are atypically coherent
over the channel width, whence the measured signal is decomposed into slow width-
coherent fluctuations and a fast background signal. The width-coherent fluctuations
reflect a bulk spatio-temporal oscillation of the pattern of circulation cells whereas
the background signal represents developed turbulence. A spectral analysis shows that
the width-coherent fluctuations have the characteristics of a wavelike motion, i.e. they
contribute significantly to the turbulent normal stresses but only weakly to the shear
stress, whereas the background turbulence is characterized by efficient shear stress
generation. The reduced turbulence activity and the tendency of the secondary-flow
pattern to oscillate are both effects of the streamline curvature. Similar observations
on reduced turbulence activity and the tendency to wavelike motion have been
reported in literature for flows in curved wind tunnels and density-stratified flows.
Our experimental results indicate that these phenomena are potentially important in
curved open-channel flows, where they affect the mixing and transport capacity of
the flow.

1. Introduction
Most natural rivers follow a winding course in their alluvial plane. Major points of

attention in river management are: (i) bank erosion, especially in the outer bends; (ii)
transport, spreading and mixing of suspended matter, pollutants, oxygen, biological
species, heat, etc.; (iii) transport of sediment and the associated erosion and deposition
phenomena. All of these points depend strongly on the turbulence characteristics of
the flow. In spite of this practical relevance, little is known about the turbulence
characteristics in open-channel bends. Numerical models of flow in open-channel
bends frequently use extensions of turbulence closures that were developed for two-
dimensional boundary-layer flow. As these closure models take insufficient account of
the curvature effects on the turbulence structure, the results are often disappointing.
The almost complete lack of experimental data on the turbulence characteristics in
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sharply curved open-channel flow hampers the development of improved turbulence
models.

Blanckaert & de Vriend (2005) present detailed experimental data on the turbulence
characteristics in the outer half of one cross-section of an open-channel bend. The
cross-stream flow pattern (secondary flow) in this section consists of two cells rotating
in opposite directions. The turbulence activity in most of the outer bend is much less
than in straight uniform shear flow. This is attributed to a less efficient generation of
turbulence, especially the Reynolds shear stress components. The deviations from the
turbulence structure in straight uniform flow are likely to be related to the curvature-
flux-Richardson number, which represents the role of the transverse pressure-gradient
in analogy to that of density stratification (cf. Bradshaw 1969). In the present paper,
the turbulence structure of the same flow field is investigated in more detail. The
experiment is described and the main features of the mean flow and the turbulence
are presented briefly. We focus on the analysis of the velocity fluctuations, which
are decomposed into slow large-scale fluctuations and a rapidly varying background
signal. The slow fluctuations are shown to represent an overall oscillation in space and
time of the pattern of circulation cells, with the characteristics of a wavelike motion.
The relation of this unsteady behaviour to the streamline curvature is investigated.
The results are compared with similar findings reported in the literature for flows in
curved wind tunnels and density-stratified flows. To our knowledge, observations of
these phenomena in open-channel flows have not been reported before.

2. The experiment
River bends exist in nature under a wide variety of spatial scales, planform shapes

and hydraulic parameters. As there is no existing experimental set-up that is represent-
ative of natural rivers, we have opted for a strongly curved single-bend configuration
consisting of a straight inflow reach followed by a bend of constant radius of
curvature. The aim was to isolate curvature effects and minimize contamination by
upstream geometrical and hydraulic effects. By considering a relatively sharp bend,
the curvature effects are more pronounced, and thus better visible.

The experiment was carried out in a laboratory flume of width B = 0.4 m and
there is a 2 m long straight approach reach, followed by a 120◦ bend with a constant
radius of curvature, R, of 2 m at the centreline. The bottom was covered by a
nearly uniform quartz sand with median grain size diameter d50 = 2.1 mm and density
2650 kgm−3. In a preliminary run, the initially horizontal sand bottom was deformed
by the flow, via a process of so-called clear-water scour (bed shear stress at or
below the threshold of sediment motion). Ultimately, the sediment transport vanished
throughout and a stable (zero time derivative) bottom topography that significantly
varies in downstream direction was obtained (figure 1). The hydraulic conditions are
shown in table 1.

The parameters R/B = 5 and R/H = 17.9 correspond to a rather tight bend with a
high aspect ratio (B/H= 3.6). The flume is narrower than usual in natural lowland
rivers, but these ratios do occur in mountain rivers and man-made channels. Moreover,
the flow in bends with a mobile-bed topography is concentrated in the outer part
of the cross-section, where the depth is significantly larger than in the shallow inner
bend with its almost ‘dead-water’ zone (e.g. Odgaard 1984; Dietrich 1987). The flow
in the outer bend of the experimental flume is therefore expected to be similar to the
flow in the deepest part of wider natural bends.
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Figure 1. (a) Experimental set-up, bed topography and reference system. ADVP: central
emitter surrounded by four receivers, R1 to R4, placed in a water-filled box attached to the
bank. Reference system: (s − n), horizontal; z, vertical. Bottom levels (cm) indicated with
respect to reach averaged bottom level. (b) Measuring grid in cross-section at 60◦, ADVP
configuration.

Non-intrusive three-dimensional measurements of the mean flow field and the
turbulence were made on a fine grid that covers the outer half of one cross-section at
60◦ from the bend entrance, where downstream variations in the bed topography are
minimal (cf. figure 1). By imposing physical boundary conditions (no-slip condition,
free shear, etc.) and making use of physical properties of, for example, the turbulent
kinetic energy, some experimental data have been extrapolated in the zones close to
the water surface and the bed outside the measuring grid, as explained in detail in
Blanckaert & Graf (2001). These extrapolations, however, are not essential to the
presented analysis.

The data are analysed in a reference system with the s-axis pointing downstream
along the channel centreline, the transversal n-axis pointing to the left bank and
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R B d50 O H Ss U Cf Re Re∗ Fr R/B R/H B/H
(m) (m) (mm) (l s−1) (m) (‰) (m s−1) (/) (103) (/) (/) (/) (/) (/)

−2.0 0.40 2.1 17 0.11 1.89 0.38 0.008 42 70 0.36 5 17.9 3.6

R, centreline radius of curvature (negative along the n-axis)
B , channel width
d50, median grain size diameter of the bed material
Q, flow discharge
H , overall mean flow depth ≈ depth at centreline
Ss , overall mean water-surface slope at the centreline
U , overall mean velocity
Cf , friction factor (estimated by Blanckaert & Graf 2001)
τb , bottom shear stress, τb/ρ = u2

∗ = Cf U 2

Fr = U/(gH )1/2, overall mean flow Froude number
Re∗ = u∗ks/ν, overall mean particle Reynolds number
ν, molecular viscosity
ks , Nikuradse equivalent sand roughness

Table 1. Hydraulic conditions.

the vertical z-axis directed upward from the horizontal (s, n)-plane (figures 1).
The measurements were made with an acoustic Doppler velocity profiler (ADVP),
developed at EPFL, which simultaneously measures at a high spatial and temporal
resolution the quasi-instantaneous velocity components along a line coinciding with
the axis of the instrument. This profiling capacity of the ADVP will be exploited in
the present analysis. From the measured data, the mean velocity field, v(vs, vn, vz),
as well as the velocity fluctuations, v′(v′

s, v
′
n, v

′
z), and the turbulent stress tensor, v′

j v
′
k

(j, k = s, n, z), can be evaluated simultaneously along the measuring profile.
The non-intrusive measurements were made by measuring through the Plexiglas

outer sidewall of the flume, with the ADVP mounted in a water-filled box attached to
the outside of this wall (figure 1). In this configuration, profiles extending over half the
channel width were measured every 0.5 cm (figure 1b). The sampling frequency was
44.6 Hz and the acquisition time was 180 s. A detailed description of the experimental
set-up, the data-treatment procedures and the measuring grid is given in Blanckaert &
Graf (2001). More information on the working principle of the ADVP, its experimental
uncertainty and its comparison with other velocity meters can be found in Rolland
(1994), Lemmin & Rolland (1997), Hurther & Lemmin (1998, 2001), Blanckaert &
Graf (2001), Hurther (2001), Blanckaert & de Vriend (2004), and Blanckaert &
Lemmin (2005).

In summary, the uncertainty in the mean velocities is estimated at less than 4 %,
that in the turbulent normal stresses at less than 10 %, and that in the turbulent shear
stresses at slightly less than that. The uncertainty in the turbulence measurements
increases progressively towards the fixed boundaries, owing to the steep mean velocity
gradient in the measuring volume. The lower 20 % of the boundary layer is affected
by it. For that reason, the ADVP measurements focus on the outer-flow region, away
from the boundaries.

3. Experimental results
Blanckaert & Graf (2001) gave a detailed presentation of the distributions of

all three mean velocity components, as well as all six turbulent stress components.
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Figure 2. Isolines of normalized downstream velocity, vs/U .

Blanckaert & de Vriend (2005) present and analyse the kinetic energy distribution of
the mean flow and the turbulence. The measured data that are of particular relevance
to the present paper are briefly summarized below.

The distribution of the normalized downstream velocity component, vs/U , in the
section investigated is presented in figure 2. In a large part of the measuring domain,
the downstream velocity is higher than the overall mean velocity of U = 0.38 m s−1.
Whilst the maximum velocity in straight uniform flow occurs near the water surface,
the maximum in this curved flow is found in the lower part of the water column. The
mechanisms leading to this distorted velocity distribution have been investigated by
Blanckaert & Graf (2004).

The vectorial representation of the normalized cross-stream motion, (vn, vz)/U , in
the section investigated is shown in figure 3. In the centre region, it shows a circulation
cell – termed centre-region cell – with outward velocities near the water surface and
inward velocities near the bed. The cross-stream velocities are typically O(0.1U ). This
cell represents the well-known helical motion that is characteristic of flow in bends. A
region characterized by weaker cross-stream velocities, typically O(0.03U ), is found
close to the outer bank. In the upper part of this outer-bank region an additional
circulation cell – termed outer-bank cell – occurs, with a sense of rotation opposite
to the centre-region cell. The mechanisms underlying both circulation cells have been
investigated by Blanckaert & de Vriend (2003, 2004).

Figures 4(a) and 4(b) show the normalized distributions of the mean flow kinetic
energy, K/(U 2/2), and the turbulent kinetic energy, k/(u2

∗,60/2), per unit mass, in
which K and k are defined as

K = 1
2

(
v2

s + v2
n + v2

z

)
, k = 1

2

(
v′2

s + v′2
n + v′2

z

)
, (1)

respectively. The characteristic shear velocity in the measuring section, u∗,60 =√
gRh(−∂zS,60/∂s) = 0.045 m s−1, is based on the downstream water-surface gradient

at the centreline, −∂zS,60/∂s = 2.89 ‰, and the hydraulic radius, Rh = 0.07m, in the
section at 60◦. The contributions of the different components to K and k have
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been analysed by Blanckaert & Graf (2001). Figure 4(c) shows the normalized
depth-averaged kinetic energy of the mean flow and the turbulence, 〈K〉/(U 2/2) and
〈k〉/(u2

∗,60/2) respectively, together with the ratio 〈k〉/〈K〉. Owing to the opposite
behaviour of K and k, this ratio exhibits a pronounced variation over the width.
Adopting a logarithmic mean-velocity profile and an exponential profile for the
turbulent kinetic energy, it is straightforward to show for straight uniform open-
channel flow away from banks or sidewalls that 〈k〉/〈K〉 is constant over the width
and depends uniquely on the friction factor, Cf , via (Blanckaert 2002)

〈k〉/〈K〉|straight ≈ 4.1Cf . (2)

For Cf ≈ 0.008, this would yield 〈k〉/〈K〉 ≈ 0.03. In our curved-flow experiments, the
observed value of 〈k〉/〈K〉 is of the expected order of magnitude near the centreline,
but it decreases strongly towards the outer bank, down to O(0.01), to increase strongly
in the friction-dominated region very close to the outer bank. Note that the uncertainty
in the depth-averaged values increases somewhat towards the outer bank, owing to
the necessary extrapolations outside the measuring grid. This uncertainty, however,
is too small to explain the difference between the straight-channel values of 〈k〉/〈K〉
and the measured ones and therefore does not alter our conclusions.

Blanckaert & de Vriend (2005) analyse the mechanisms leading to these distribu
tions of k and 〈k〉/〈K〉. They evaluate the turbulence-structure parameters a1 =√

v′
sv

′
z

2
+ v′

nv
′
z

2
/2k and νjk = νkj = −(v′

j v
′
k − 2/3δjkk)/2ejk, in which δjk is the Kronecker

delta and ejk are the strain rates, for j , k = s, n, z. The results indicate that curved-flow
turbulence is less efficient in producing shear than the straight-flow equivalent, with
the same amount of turbulent kinetic energy. They show that this change in the
turbulence structure is at the basis of the observed distributions of the turbulence
properties. In the following, an analysis of the measured velocity fluctuations and the
turbulence structure will be made that is complementary to that analysis and will
confirm its results.

4. Analysis of velocity fluctuations and of turbulence structure
4.1. Width-coherent velocity fluctuations

As mentioned before, the ADVP has the advantage of measuring simultaneous
profiles of the instantaneous velocity components along an entire line (instead of a
single point). This line-by-line approach offers the possibility to investigate coherent
structures along those lines. In the experiment (see figure 1), profiles extending over
half the channel width are measured at different vertical levels. They enable us to
investigate the time-behaviour of the system of circulation cells. The time-stack plot
in figure 5 shows the transversal velocity fluctuations for the profiles at 3.4 cm and
9.3 cm below the water surface, i.e. at the level of the eye of the outer-bank cell and
the core of minimum turbulent kinetic energy, respectively (cf. figures 3b and 4b).
The streaks in this figure indicate that the transversal fluctuations are coherent over
the width.

In order to quantify the coherence of these fluctuations, two-point correlations are
evaluated via

Rjj(−7.5, n; z) =
v′

j (n = −7.5, z)v′
j (n, z)√

v′2
j (n = −7.5, z)

√
v′2

j (n, z)
. (3)
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The reference point of this correlation is arbitrarily located at n= −7.5 cm, i.e. at
12.5 cm from the outer bank. The correlation Rnn is shown in figure 6(a). As the
results are similar throughout the water column, the vertical mean is representative of
the entire vertical. Figure 6(b) shows the cross-stream distribution of these vertically
averaged values, 〈Rjj(−7.5, n)〉.

Typical two-point correlations of homogeneous turbulence would show an initial
steep descent around the reference point, down to values of about 1/3, followed
by a tail with Rjj < 1/3 (Prandtl, Oswatitsch & Wieghardt 1990; Bruns, Fernholz &
Monkewitz 1999). 〈Rzz〉 in figure 6(b) more or less follows this pattern, but 〈Rss〉
and 〈Rnn〉 have a triangular shape and do not show any initial steep descent. This
indicates that the downstream and transversal fluctuations are atypically coherent
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over the width. In the outer-bank region, 〈Rzz〉 is negative, which indicates that the
vertical fluctuations of the outer-bank cell are out of phase with those of the centre-
region cell. This phenomenon, however interesting, will not be investigated in further
detail. We will focus on the downstream and the transversal fluctuations.

4.2. Decomposition of the velocity fluctuations

Following Hussain (1983), the velocity fluctuations, v′
j , can be decomposed into

slow and rapid fluctuations. Anticipating the results, we denote the slow fluctuations
with the subscript w (wave) and the rapid ones with the subscript b (background
turbulence):

v′
j (n, z, t) = v′

j,w(n, z, t) + v′
j,b(n, z, t) (j = s, n). (4)

Hussain (1983) and Tamburrino & Gulliver (1999) made the split by taking a moving
average over a time period long enough to eliminate the fast fluctuations, but short
enough not to lose essential information on the slow fluctuations. We exploit the
profiling capacity of the ADVP and make use of the observed width-coherence of
the downstream and transversal velocity fluctuations (figure 6): we assume that the
fast fluctuations are not coherent over the width, while the slow ones are. Therefore,
we average the velocity fluctuations over the width range from n= −14.7 cm to
n= 0.9 cm, i.e. over 53 measuring points (a region of 5.3 cm wide adjacent to the outer
bank is omitted, because its transversal fluctuations may be geometrically hindered
by the outer bank):

{v′
j,b}(z, t) ≈ 0 � {v′

j,w}(z, t) ≈ v′
j,w(n, z, t), (5)

in which {·} denotes the width-averaging operation. Together with (4), this leads to:

v′
j,w(n, z, t) ≈ {v′

j,w}(z, t) ≈ {v′
j }(z, t), (6)

whence

v′
j (n, z, t) = {v′

j }(z, t) + v′
j,b(n, z, t). (7)

This provides an easily applicable method for first-order decomposition of the velocity
fluctuations.

4.3. Bulk-oscillation of the pattern of circulation cells

We assume that the slow width-coherent fluctuations represent a bulk-oscillation of
the pattern of circulation cells with migration speed V osc(t) = (Vs,osc, Vn,osc)(t). In the
following, some experimental observations are presented that are in agreement with
this assumption.

In an Eulerian framework, a rigid transverse displacement of the pattern of
circulation cells over a distance �n(t) = ∫Vn,osc dt replaces the fluid particle at position
n by the particle that originates from position n − �n(t), thus generating the slow
Eulerian velocity variation:

v∗(n, z, t) = v(n − �n(t), z) − v(n, z). (8)

An illustration for v∗
n is given in figure 7. Similar variations induced by the downstream

migration, �s(t) = ∫Vs,osc dt , are assumed to be small, since the downstream velocity
gradients are presumably much smaller than the transversal ones, ∂v/∂s � ∂v/∂n;
they are ignored for lack of information (measurements taken in one cross-section
only).

The slow velocity variations corresponding to this bulk-oscillation can be written as:

v′
w(n, z, t) = v∗(n, z, t) + V osc(t). (9)
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Combining (6) and (9) gives:

{v′}(z, t) ≈ {v∗}(z, t) + V osc(t). (10)

At about mid-depth, vn and its radial derivative are small (figure 7). Accordingly, v∗
n

is also small, whence {v′
n} ≈ Vn,osc. In the upper part of the water column, v∗

n and Vn,osc

have the same sign, whereas they are of opposite sign in the lower part (see figure 7).
Thus, if a bulk-oscillation of the pattern of circulation cells exists, {v′

n} must have the
following property:

{v′
n}2 > V 2

n,osc in the upper part of the water column, (11)

{v′
n}2 ≈ V 2

n,osc at about mid-depth, (12)

{v′
n}2 < V 2

n,osc in the lower part of the water column. (13)

In the next section, we will show that the measured profile of {v′
n}2/u2

∗,60 has this
property.

As {v∗
n}(z, t), and thus {v′

n}(z, t), are mainly generated by the transversal component
of the bulk-oscillation, they should have the same symmetry properties as Vn,osc(t).
Figure 8 shows that both the skewness Skn = {v′

n}3/({v′
n}2)3/2 and the kurtosis (also

called flatness) Fln = {v′
n}4/({v′

n}2)2 are rather uniform over the depth, as they are
by definition for Vn,osc(t). The figure also shows that the skewness of {v′

n} is rather
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small (Skn < −0.5), which indicates that the width-coherent transversal fluctuations
are rather symmetrical in time. The kurtosis is nearly constant at Fln =3, which
corresponds to the value for a Gaussian process. Figure 8 also shows the skewness
and the kurtosis of the width-coherent downstream oscillations {v′

s}. The skewness
is nearly constant at Sk s ≈ 0, indicating symmetrical fluctuations, and the kurtosis is
nearly constant at Fl s = 3.

This all adds up to the suggestion that a bulk-oscillation exists. In the next
sections, we will further investigate the properties of that oscillation and the remaining
turbulence.

4.4. Decomposition of the turbulent stresses

The kinetic energy content of the width-coherent fluctuations and the background-
turbulence is analysed by decomposing the Reynolds normal stresses in a similar way
as the turbulent fluctuations (cf. equation (7)):

v′2
j (n, z) = {v′

j }2(z) + v′2
j,b(n, z) + 2{v′

j }v′
j,b(n, z) (j = s, n). (14a)

Figure 9 shows the results:

(i) the normal stresses due to the total velocity fluctuations, v′2
j (figure 9a, b);

(ii) the normal stress contributions due to the background turbulence, v′2
j,b

(figure 9c, d); both the downstream and the normal component are high in the
outer-bank shear layer, decrease to a minimum near the edge of the outer-bank
region, and then increase towards the inner bend;

(iii) the normal stress contributions due to the width-coherent fluctuations, {v′
j }2

(figure 9e), which are of the same order of magnitude as those due to the background
turbulence.

Note that the contribution due to the interaction between the background turbu-
lence and the width-coherent fluctuations, 2{v′

j }v′
j,b(n, z) (to be evaluated from 14(a)

and figure 9), is not negligible and takes positive as well as negative values on the
measuring grid. For further details on the distributions of the total normal stress
components v′2

j , we refer to Blanckaert & Graf (2001).
As stated before (equation (12)), the normal stress contribution due to the trans-

versal bulk-oscillation Vn,osc(t) at about mid-depth can be approximated by
√

V 2
n,osc/

u∗,60 ≈
√

{v′
n}2/u∗,60 ≈ 0.4 (figure 9e), i.e.

√
V 2

n,osc ≈
√

{v′
n}2 ≈ 0.02 m s−1. Figure 9(e)

shows that the downstream component of the width-coherent fluctuations is con-

siderably larger than the transversal one:

√
{v′

s}2/u∗,60 ≈ 0.6. This high value suggests

that {v′
s}2 is not primarily induced by the transversal displacement of the pattern

of circulation cells, but that the bulk-oscillation has an important downstream
component, Vs,osc(t). More extensive measurements, simultaneously covering more
than one cross-section, will be needed to investigate this.

The shear stress v′
sv

′
n is decomposed in line with (7):

v′
sv

′
n(n, z) = {v′

s}{v′
n}(z) + v′

s,bv
′
n,b(n, z) + {v′

s}v′
n,b(n, z) + v′

s,b{v′
n}(n, z). (14b)

Figure 10(a) shows the normalized total shear stress −v′
sv

′
n/u

2
∗,60, figure 10(b) the nor-

malized shear stress, −{v′
s}{v′

n}|f <3[Hz]/u
2
∗,60, generated by the width-coherent velocity

fluctuations. In the latter, the high-frequency contributions for f > 3 Hz have been
filtered out, because they are considered to be parasitic (see figures 11a and 12b).
Comparison with the normalized total shear stress shows that the width-coherent
fluctuations have a relatively small contribution to the shear stress.
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n,b; and (e) by width-coherent flucuations {v′
s}2 and

{v′
n}2 . All normalized by u2

∗,60.

In summary, when treated as turbulence, the width-coherent fluctuations contribute
significantly to the normal stresses, but much less to the shear stress. Velocity
fluctuations that do not generate shear are not representative of developed turbulence,
but rather indicate a wavelike motion. This will be further investigated in the following
by means of a spectral analysis of the velocity fluctuations.

4.5. Spectral analysis of the structure of turbulence

A spectral analysis of the width-coherent fluctuations {v′
j } and of the background

turbulence v′
j,b is performed to investigate their structure. In line with the way the

experimental data have been processed, the fluctuating signals are decomposed into
Fourier components, as:

x ′
j (t) =

N∑
α=1

aj,α cos(2πtfα + φj,α) (j = s, n), (15)
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in which x ′
j stands for {v′

j } or v′
j,b, aj,α and φj,α are the amplitude and phase of the

component with frequency fα = αf1, f1 is the basic frequency and fN is the Nyquist
frequency, i.e. half the sampling frequency.

The power spectral density function, F (f ), and its cumulative equivalent, 
(f ),
indicate the contribution of each frequency range to the intensity of the fluctuating
signal:


(f ) = x ′2(f̂ < f ) =

∫ f

0

F (f̂ ) df̂ . (16)

These continuous functions of f are approximated by their discrete Fourier-series
counterpart (for simplicity, the same notations have been used for the continuous
functions and the discrete approximations):


(fm) = x ′2(f < fm) =

m∑
α=1

F (fα)(fα − fα−1) (m = 1, . . . , N). (17)

Equation (16) can also be written as:


(fm) =

∫ f

0

F (f̂ ) df̂ =

∫ f

0

f̂ F (f̂ ) d(ln f̂ ) (m = 1, . . . , N) (18)

indicating that in a graphical representation with a logarithmic frequency scale, the
contribution of each frequency range is visualized by the area under the graph of
f F (f ), or fαF (fα) (α = 1, . . . , N) for the discrete approximation.

Similar F -functions (spectra) of the width-coherent fluctuations were found at each
measured elevation. Therefore, and to reduce scatter, only the vertical mean, f 〈F 〉,
is shown in figure 11(a). The main contribution to {v′

s}2 lies in the frequency range

f < 1 Hz, with a maximum around f = 0.1 Hz, whereas the main contribution to {v′
n}2

is found in the range f = 0.3–2 Hz. This indicates that the pattern of circulation cells
does not oscillate with a characteristic dominant frequency, but rather in a range of
low frequencies, 0.1 Hz <f < 2 Hz. The F -functions of {v′

s} and {v′
n} both contain a



40 K. Blanckaert and H. J. de Vriend

Transversal background turbulence

0

0.2

0.4

0.6

0.8

1.0

1

2

3
1

3

4

-2/3

2

Width-coherent fluctuations

10–6

10–5

10–4

10–2 10–1 100 101

Parasitical
fast

fluctuations 
 

0.
1

Frequency,  f  (Hz)
10–2 10–1 100 101

Frequency,  f  (Hz)

1 2

0.83

0.93

3

f �
F
�
 f

or
 th

e 
w

id
th

-c
oh

er
en

t
fl

uc
tu

at
io

ns
, {
v j

′}
 (

m
2  s

–1
) 

f F
 f

or
 th

e 
ba

ck
gr

ou
nd

  t
ur

bu
le

nc
e,

 v
′ n,b

, (
m

2  s
–1

) 

0

0.2

0.4

0.6

0.8

1.0

√{
v′ j

2 },
 (

/)

√v
′ n2 ,b

, (
/)

10–6

10–5

10–4

{v′n}

{v′n}

{v′s}

{v′s}

(a) (b)

� �

Figure 11. (a) Frequency × power spectral density, f 〈F 〉, and normalized cumulative power
spectral density, 〈
〉/{v′

j }2, for width-coherent fluctuations, {v′
s} and {v′

n}, averaged over all
measured profiles; (b) frequency × power spectral density, fF and normalized power spectral

density, 
/v′2
n,b , for transversal background turbulence, v′

n,b , in three points with coordinates

(1) (n, z∗) = (−12, −9.3); (2) (−7.5, −9.3); (3) (−3, −9.3).

high-frequency tail which does not refer to a low-frequency width-coherent motion.
Based on our results (further see figure 12b), we assume that frequencies above 3 Hz
are parasitical. The 
-function shows that this parasitical tail represents less than 10 %
of {v′

s}2 and less than 20 % of {v′
n}2. This does not alter our previous conclusion

that the width-coherent fluctuations contribute significantly to the turbulent normal
stresses.

Figure 11b also shows the F - and 
-functions of the background-turbulence fluctua-
tions v′

n,b in the points at n= −12, −7.5 and −3 cm, respectively, at 9.3 cm below
the water surface. These points are chosen in regions with low and high levels
of background-turbulence (see figure 9c, d). The maximum contributions to the
background-turbulence are found around f = 4 Hz. Figure 11 also shows an inertial
subrange – corresponding to a slope of –2/3 (–5/3 in a log-log F (f )-plot). The
observed F - and 
-functions of the background-turbulence fluctuations have a
form typical of developed turbulence. Similar F - and 
-functions were found for
the downstream background-turbulence fluctuations, v′

s,b. These F - and 
-functions
indicate that the width-coherent fluctuations and the background turbulence have
different spectral characteristics.

It was shown in the foregoing that the width-coherent fluctuations significantly
contribute to the normal stresses, but generate little shear stress. The efficiency with
which fluctuating velocities generate turbulent shear stresses, given the kinetic energy
of the velocity fluctuations, is an important characteristic of the turbulence structure.
In the following, it will be analysed by computing the turbulent shear stresses and the
turbulent normal stresses from the Fourier-series representations of the fluctuating
velocities, as:

x ′
j x

′
k =

1

Ts

∫ T

0

[
N∑

α=1

aj,α cos(2πtfα + φj,α)

] ⌊
N∑

β=1

ak,β cos(2πtfβ + φk,β)

⌋
dt

(j, k = s, n), (19)
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in which Ts is the sampling time. Using the orthogonality characteristic of the Fourier
components,

1

Ts

∫ T

0

cos(2πtfα + φs,α) cos(2πtfβ + φn,β) dt = 1
2
cos(φn,β − φs,α)δαβ (20)

which is valid for long sampling periods, Ts � 1/fα, 1/fβ , the shear stresses and the
normal stresses can be expressed as:

x ′
sx

′
n = 1

2

N∑
α=1

as,αan,α cos(φn,α − φs,α), (21)

x ′2
j = 1

2

N∑
α=1

a2
j,α (j = s, n). (22)

The efficiency by which the turbulent fluctuations at frequency fα generate shear
stresses can be quantified by the ratio,

x ′
sx

′
n

2

x ′2
s x ′2

n

(fα) = cos2(φn,α − φs,α), (23)

which means that it depends only on the phase lag, φn,α −φs,α . These phase lags enable
us to distinguish between developed turbulence and wavelike motion (McBeans &
Miyake 1972; Komori et al. 1983). The efficiency of shear stress generation is high
for developed turbulence, with phase lags typically around i π (i = −1, 0, 1), whereas
wavelike velocity fluctuations hardly generate shear stresses and have phase lags
typically around ± π/2.

As shown before, the width-coherent velocity fluctuations {v′
s} and {v′

n} are ineffi-
cient in generating shear stress. Figure 12(a) shows the phase lags at each frequency
between the components of {v′

s} and {v′
n} for the profile at 9.3 cm below the water

surface. For f < 1.5 Hz, these phase lags are largely scattered around values of
φn,α −φs,α ≈ π/2. Because of the large scatter in this figure, the same data are presented
in an alternative way. The phase lags for the width-coherent fluctuations have been
calculated at each measured elevation, and those for the background turbulence have
been calculated in each measured point. For each frequency, fα , the percentage of
all phase lags found around ± π/2 (0.3π � ‖φn,α − φs,α‖ � 0.7π) and around ± iπ
(‖φn,α −φs,α‖ � 0.2π or 0.8π � ‖φn,α −φs,α‖) is shown in figures 12(b) and 12(c) for the
width-coherent fluctuations and the background turbulence, respectively. The phase
lags of the width-coherent fluctuations (figure 12b) show a different behaviour in
the low- and high-frequency ranges, separated at about 1.5 Hz. In the low-frequency
range, at least in the range that contributes most to the width-coherent normal
stresses (f ≈ 0.4 ÷ 1Hz; figure 11a), they are mainly found around ± π/2. In the
high-frequency range they occur mainly around 0 and ± π. It is on the basis of
this result that we have chosen to consider the contributions with f > 3 Hz as fast
parasitical fluctuations. The phase lags of the background-turbulence fluctuations
(figure 12c) are mainly found around 0 and ± π in the low-frequency range and tend
to be more randomly distributed at higher frequencies.

Thus, the decomposition of the velocity fluctuations into width-coherent fluctuations
and background turbulence seems to be physically meaningful, since they have a
fundamentally different turbulence structure. The width-coherent fluctuations seem to
represent a bulk-oscillation of the pattern of circulation cells with the characteristics
of a wavelike motion, i.e. with a low efficiency in shear generation.
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The background turbulence has the characteristics of developed turbulence and is
much more efficient in shear generation. All departures from the turbulence structure
in straight uniform shear flow are directly or indirectly due to the streamline curvature
of the mean flow. Blanckaert & de Vriend (2005) have shown that the departures
of the measured turbulence structure from its counterpart in straight uniform shear
flow seem to be related to a curvature-flux-Richardson number Rf that reflects the
streamline curvature. The relation between the experimentally observed turbulence
characteristics and the streamline curvature will be further elaborated in the next
section.

5. The influence of streamline curvature
Bradshaw (1969, 1973) has shown, for two-dimensional flows that are curved in

their own plane, that the structure of turbulence is sensitive to streamline curvature
and stipulated that the influence of streamline curvature is analogous to the influence
of buoyancy in a density-stratified flow. The analysis that is generally used to derive
buoyancy parameters from the equations of motion can be used to derive equivalent
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parameters for streamline curvature. In the present case of three-dimensional flow,
curved in the horizontal plane, such parameters can be defined as:

ωBV =

√
2

vs

r2
sn

∂rsnvs

∂n
[Hz], (24)

S =
vs

rsn

/
∂vs

∂n
, (25)

Ri = 2
vs

r2
sn

∂rsnvs

∂n

/(
∂vs

∂n

)
= 2S(1 + S), (26)

Rf =

2v′
sv

′
n

vs

rsn

v′
sv

′
n

1

rsn

∂rsnvs

∂n

=

2
vs

rsn

1

rsn

∂rsnvs

∂n

=
2S

1 + S
, (27)

in which vs represents the velocity along the streamline and rsn the radius of curvature
of the streamline in the (s, n)-plane. The latter can be evaluated from the experimental
data using:

1

rsn

=
1

r ′
sn

+
1

1 + n/r

1

R
, (28)

R being the centreline curvature, and

1

r ′
sn

≈ d2n

ds2
=

d

ds

(
vn

vs

)
=

1

v2
s

(
vs

dvn

ds
− vn

dvs

ds

)

≈ 1

v2
s

[(
vn

∂vn

∂n
+ vz

∂vn

∂z

)
− vn

vs

(
vn

∂vs

∂n
+ vz

∂vs

∂z

)]
, (29)

based on

dvi

ds
=

∂vi

∂s
+

∂vi

∂n

vn

vs

+
∂vi

∂z

vz

vs

(i = s, n) (30)

and the assumption ∂vi

∂s
≈ 0.

Clearly, this derivation is restricted to plane curved flows.
The frequency ωBV was first derived by von Kármán (1934) from a simple linear

stability analysis. He showed that when an element of fluid is transversally displaced
in a plane frictionless curved (or rotating) flow, it will either move further away from
its original position or return towards it and oscillate about it. If ωBV is real, it
represents the frequency of this oscillation. An imaginary ωBV indicates exponential
growth or decay. The frequency ωBV is similar to the Brünt–Väisälä frequency in
density-stratified flow.

The dimensionless curvature parameter S (equation (25)) derived by Prandtl (1930)
represents the ratio of the curvature-induced extra strain-rate to the inherent strain-
rate. When dividing the square of ωBV by (∂vs/∂n)2, which is a typical frequency
scale of a shear flow, we obtain the curvature-gradient-Richardson number Ri (equa-
tion (26)). Whilst ωBV , S and Ri are related to static stability and do not involve
turbulence, the curvature-flux-Richardson number Rf (equation (27)) is derived
from the Reynolds stress equations. It is interpreted as minus the ratio of the
curvature-induced v′2

n -production to the total v′2
s -production. It is positive/negative

for stabilizing/destabilizing curvature. According to (24)–(27), S, Ri and Rf are
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Figure 13. (a) Flux-curvature-Richardson number, Rf ; (b) Depth-averaged
flux-curvature-Richardson number, 〈Rf 〉, and ratio, 〈k〉/〈K〉 (copied from figure 4c).

closely related:

Rf = Ri/(1 + S)2 = 2S/(1 + S) whence Rf ≈ Ri ≈ 2S for small S. (31)

Blanckaert & de Vriend (2005) show that in the present strongly three-dimensional
flow, the reduction of turbulence activity in the deepest part of the cross-section
seems to be related to the curvature-flux-Richardson number Rf . Their findings are
briefly summarized here. Figure 13(a) shows the experimental distributions of Rf and
figure 13(b) compares the distributions of its depth-averaged value 〈Rf 〉 with that of
〈k〉/〈K〉 (copied from figure 4c). In most of the area, Rf and 〈Rf 〉 are positive and
increase in outward direction from small values near the centreline to maximum values
O(2). In the outer-bank shear layer, where Rf and 〈Rf 〉 are negative, the influence of
the sidewall proximity dominates the influence of the streamline curvature.

There seems to be a strong negative relation between the distributions of 〈Rf 〉
and 〈k〉/〈K〉. Near the centreline, where 〈Rf 〉 ∼ 0, 〈k〉/〈K〉 approaches its straight-
uniform-flow value of 0.03. The outward reduction of 〈k〉/〈K〉 is accompanied by
increasing values of 〈Rf 〉, and the maximum of 〈Rf 〉 coincides with the minimum of
〈k〉/〈K〉. In the outer-bank shear layer, 〈Rf 〉 < 0 and 〈k〉/〈K〉 strongly increases. As
in two-dimensional flows, positive values of Rf in curved flow go with a reduction of
the turbulent kinetic energy. Note that the extrapolations outside the measuring grid
do not significantly alter these results.
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Figure 14 shows the distribution of the frequency ωBV (equation (24)). The
calculated values are uniform over most of the flow depth, except close to the bed.
Near the outer bank, where the curvature has a destabilizing effect, ωBV is imaginary.
Values of the order of 0.3 Hz are found in the region where the ratio 〈k〉/〈K〉 is
minimum. Near the centreline, where the ratio 〈k〉/〈K〉 strongly increases, ωBV goes
up to values of about 1.5 Hz. These values of ωBV are comparable to the observed
dominant frequency ranges of the width-coherent wavelike velocity fluctuations {v′

s}
and {v′

s} shown in figure 11(a).
Thus, both the bulk-oscillation of the pattern of circulation cells and the reduction

of turbulence activity seem to be related to parameters representative of the streamline
curvature. The derivation of the curvature parameters ωBV and Rf is based on a linear
analysis for small streamline curvatures in two-dimensional curved flow in the (s, n)-
plane (Bradshaw 1969). Our experiment concerns highly three-dimensional strongly
curved flow, with complicating factors such as a relatively strong cross-stream motion,
the proximity of the banks and a non-trivial bed topography. It is remarkable that
even in such a complicated flow, the reduction of turbulence and its tendency towards
wavelike motion seem to be related to simple streamline-curvature parameters such
as ωBV and Rf . However, a larger amount of experimental data is needed to confirm
these results.

Strong turbulence damping and the transformation of low-frequency turbulence to
a wavelike motion have been reported in the literature for different configurations.
So & Mellor (1973) investigated turbulent boundary layers along a convex surface
of varying curvature in a wind tunnel. In a region of stabilizing curvature, S ≈
0.3, they measured small turbulent normal stresses and nearly zero shear stresses.
They speculate that this represents linear internal waves. Irwin & Smith (1975)
derived a model of streamline curvature effects from the simplified Reynolds stress
equations, and tested it against experimental data from curved wall jets in still air. The
model predicts that turbulence reduces to wavelike motion for S ≈ 0.1. Holloway &
Tavoularis (1992) and Chebbi, Holloway & Tavoularis (1998) experimented on the
effects of curvature on sheared turbulence in a wind tunnel, relatively isolated from
wall and entrainment effects. They found that turbulence approaches wavelike motion
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for S ≈ 0.33. Holloway & Tavoularis (1998) presented a geometric explanation for
the effects of mild streamline curvature on the turbulence anisotropy. McBean &
Miyake (1972) took measurements in density-stratified atmospheric boundary layers
and found that the shear stress generation decreases with increasing stability and that
internal waves appear. Komori et al. (1983) experimentally investigated stably density-
stratified open-channel flow and found that turbulent motion approaches wavelike
motion with increasing Richardson number, Ri ≈ 0.3 to 1. Our observation of a
reduced turbulence activity and a tendency to wavelike motion complies qualitatively
with these observations.

6. Discussion and conclusions
Non-intrusive three-dimensional mean flow and turbulence measurements were

made in the outer half of one cross-section of an open-channel bend, using an acoustic
Doppler velocity profiler (ADVP), which enables tracing coherent flow structures.

The downstream mean velocity vs increases towards the outer bend and the
maximum velocities are found in the lower part of the water column. A bi-cellular
pattern of cross-stream circulation exists: besides a centre-region cell (the classical
helical motion), a weaker counter-rotating cell occurs near the water surface adjacent
to the outer bank. The turbulence activity in most of the outer bend is rather strongly
reduced, as compared with straight uniform shear flow.

The analysis presented herein gives more physical insight into the turbulence
dynamics, which can speculatively be described as follows. Similar to the influence of
buoyancy, streamline curvature can lead to turbulence damping. This phenomenon
is characterized by parameters such as the curvature-flux-Richardson number Rf , or
the Brünt–Väisälä frequency ωbv . Whereas increasing Reynolds numbers favour the
turbulence activity, increasing streamline curvatures seem to suppress it. This damping
occurs basically through a change in the turbulence structure, which goes with a less
effective shear production.

The velocity fluctuations are atypically coherent over the width. The velocity
signal is therefore decomposed into width-coherent fluctuations and rapidly varying
background turbulence. The coherent fluctuations seem to represent a bulk-oscillation
of the pattern of circulation cells in the downstream and transversal directions,
which is significant in magnitude, nearly symmetrical and Gaussian. When treated as
turbulence, it contributes significantly to the turbulent normal stresses (and thus also
to the turbulent kinetic energy), but little to the turbulent shear stresses. The structures
of the width-coherent velocity fluctuations and of the background turbulence are
fundamentally different. The former have the characteristics of a wavelike motion
(linear internal waves), with little shear stress generation, whereas the latter has the
characteristics of developed turbulence with the usual efficiency of the shear stress
generation. As part of the velocity fluctuations are organized in a coherent wavelike
motion, the efficiency of shear generation is less than in straight uniform flow with
the same total kinetic energy of the velocity fluctuations.

These results are comparable to the reduced levels of turbulence activity and the
tendency to wavelike motion reported in literature for the cases of curved wind
tunnels and density-stratified flows. The suppression of turbulence activity, in favour
of a coherent wavelike motion, is an important phenomenon in curved open-channel
flows, as it will affect the mixing and transport capacity of the flow and the forces
exerted on the flow boundaries.
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The experimental research is at present being extended by measuring in different
sections all around the bend and under various hydraulic conditions.
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écoulements turbulents en hydraulique. PhD thesis 1281, Ecole Polytechnique Fédérale
Lausanne, Switzerland.

So, R. M. C. & Mellor, G. L. 1973 Experiment on convex curvature effects in turbulent boundary
layers. J. Fluid Mech. 60, 43–62.

Tamburrino, A. & Gulliver, J. S. 1999 Large flow structures in a turbulent open channel flow.
J. Hydraul. Res. 37, 363–380.


